Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Insignificant shadow detection for video segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dong Xu ; Dept. of Electron. Eng. & Inf. Sci., Univ. of Sci. & Technol. of China, Hefei, China ; Jianzhuang Liu ; Xuelong Li ; Zhengkai Liu
more authors

To prevent moving cast shadows from being misunderstood as part of moving objects in change detection based video segmentation, this paper proposes a novel approach to the cast shadow detection based on the edge and region information in multiple frames. First, an initial change detection mask containing moving objects and cast shadows is obtained. Then a Canny edge map is generated. After that, the shadow region is detected and removed through multiframe integration, edge matching, and region growing. Finally, a post processing procedure is used to eliminate noise and tune the boundaries of the objects. Our approach can be used for video segmentation in indoor environment. The experimental results demonstrate its good performance.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:15 ,  Issue: 8 )