By Topic

Integrated performance monitoring of a cosmology application on leading HEC platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Borrill ; Computational Res. Div., Lawrence Berkeley Nat. Lab., CA, USA ; J. Carter ; L. Oliker ; D. Skinner
more authors

The cosmic microwave background (CMB) is an exquisitely sensitive probe of the fundamental parameters of cosmology. Extracting this information is computationally intensive, requiring massively parallel computing and sophisticated numerical algorithms. In this work we present MADbench, a lightweight version of the MADCAP CMB power spectrum estimation code that retains the operational complexity and integrated system requirements. In addition, to quantify communication behavior across a variety of architectural platforms, we introduce the integrated performance monitoring (IPM) package: a portable, lightweight, and scalable tool for effectively extracting MPI message-passing overheads. A performance characterization study is conducted on some of the world's most powerful supercomputers, including the superscalar Seaborg (IBM Power3+) and CC-NUMA Columbia (SGIAltix), as well as the vector-based Earth Simulator (NEC SX-6 enhanced) and Phoenix (Cray XI) systems. In-depth analysis shows that in order to bridge the gap between theoretical and sustained system performance, it is critical to gain a clear understanding of how the distinct parts of large-scale parallel applications interact with the individual subcomponents of HEC platforms.

Published in:

2005 International Conference on Parallel Processing (ICPP'05)

Date of Conference:

14-17 June 2005