By Topic

A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Todorov, E. ; Dept. of Cognitive Sci., California Univ., San Diego, CA, USA ; Weiwei Li

We present an iterative linear-quadratic-Gaussian method for locally-optimal feedback control of nonlinear stochastic systems subject to control constraints. Previously, similar methods have been restricted to deterministic unconstrained problems with quadratic costs. The new method constructs an affine feedback control law, obtained by minimizing a novel quadratic approximation to the optimal cost-to-go function. Global convergence is guaranteed through a Levenberg-Marquardt method; convergence in the vicinity of a local minimum is quadratic. Performance is illustrated on a limited-torque inverted pendulum problem, as well as a complex biomechanical control problem involving a stochastic model of the human arm, with 10 state dimensions and 6 muscle actuators. A Matlab implementation of the new algorithm is availabe at www.cogsci.ucsd.edu/∼todorov.

Published in:

American Control Conference, 2005. Proceedings of the 2005

Date of Conference:

8-10 June 2005