Cart (Loading....) | Create Account
Close category search window

How resilient are distributed f fault/intrusion-tolerant systems?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sousa, P. ; Lisbon Univ., Portugal ; Neves, N.F. ; Verissimo, P.

Fault-tolerant protocols, asynchronous and synchronous alike, make stationary fault assumptions: only a fraction f of the total n nodes may fail. Whilst a synchronous protocol is expected to have a bounded execution time, an asynchronous one may execute for an arbitrary amount of time, possibly sufficient for f+1 nodes to fail. This can compromise the safety of the protocol and ultimately the safety of the system. Recent papers propose asynchronous protocols that can tolerate any number of faults over the lifetime of the system, provided that at most f nodes become faulty during a given interval. This is achieved through the so-called proactive recovery, which consists of periodically rejuvenating the system. Proactive recovery in asynchronous systems, though a major breakthrough, has some limitations which had not been identified before. In this paper, we introduce a system model expressive enough to represent these problems which remained in oblivion with the classical models. We introduce the predicate exhaustion-safe, meaning freedom from exhaustion-failures. Based on it, we predict the extent to which fault/intrusion-tolerant distributed systems (synchronous and asynchronous) can be made to work correctly. Namely, our model predicts the impossibility of guaranteeing correct behavior of asynchronous proactive recovery systems as exist today. To prove our point, we give an example of how these problems impact an existing fault/intrusion-tolerant distributed system, the CODEX system, and having identified the problem, we suggest one (certainly not the only) way to tackle it.

Published in:

Dependable Systems and Networks, 2005. DSN 2005. Proceedings. International Conference on

Date of Conference:

28 June-1 July 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.