By Topic

Parylene etching techniques for microfluidics and bioMEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Meng ; Dept. of Biomed. Eng., Southern California Univ., Los Angeles, CA, USA ; Yu-Chong Tai

Parylene C (poly(monochloro-p-xylylene)) is a member of a unique family of thermoplastic, crystalline polymers. Compared to other polymers, parylene films are exceptionally conformal and chemically inert owing to its vapor deposition polymerization (VDP) coating process. These properties bring about many interesting possibilities for MEMS, particularly in microfluidic and bioMEMS applications. Dry etching techniques are required to define fine features in parylene films. For the first time, selective parylene C removal using oxygen-based plasmas is characterized for plasma etching, reactive ion etching (RIE), and deep reactive ion etching (DRIE) based methods. The ability of these techniques to achieve high aspect ratio (HAR) structures desirable for MEMS applications is also investigated.

Published in:

18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005.

Date of Conference:

30 Jan.-3 Feb. 2005