By Topic

Design of a power-reduction Viterbi decoder for WLAN applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chien-Ching Lin ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Yen-Hsu Shih ; Chang, Hsie-Chia ; Chen-Yi Lee

In this paper, a 64-state four-bit soft-decision Viterbi decoder with power saving mechanism for high speed wireless local area network applications is presented. Based on path merging and prediction techniques, a survivor memory unit with hierarchical memory design is proposed to reduce memory access operations. It is found that more than 70% memory access can be reduced by taking advantage of locality. Moreover, a low complexity compare-select-add unit is also presented, leading to save 15% area and 14.3% power dissipation as compared to conventional add-compare-select design. A test chip has been designed and implemented in 0.18-μm standard CMOS process. The test results show that 30∼40% power dissipation can be reduced, and the power efficiency reaches 0.75 mW per Mb/s at 6 Mb/s and 1.26 mW per Mb/s at 54 Mb/s as specified in IEEE 802.11a.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 6 )