By Topic

Adaptation technique for integrating genetic programming and reinforcement learning for real robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kamio, S. ; Graduate Sch. of Frontier Sci., Univ. of Tokyo, Chiba, Japan ; Iba, H.

We propose an integrated technique of genetic programming (GP) and reinforcement learning (RL) to enable a real robot to adapt its actions to a real environment. Our technique does not require a precise simulator because learning is achieved through the real robot. In addition, our technique makes it possible for real robots to learn effective actions. Based on this proposed technique, we acquire common programs, using GP, which are applicable to various types of robots. Through this acquired program, we execute RL in a real robot. With our method, the robot can adapt to its own operational characteristics and learn effective actions. In this paper, we show experimental results from two different robots: a four-legged robot "AIBO" and a humanoid robot "HOAP-1." We present results showing that both effectively solved the box-moving task; the end result demonstrates that our proposed technique performs better than the traditional Q-learning method.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:9 ,  Issue: 3 )