Cart (Loading....) | Create Account
Close category search window
 

Using low precision floating point numbers to reduce memory cost for MP3 decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eilert, J. ; Dept. of Electr. Eng., Linkoping Univ., Sweden ; Ehliar, A. ; Liu, D.

The purpose of our work has been to evaluate the practicality of using a 16-bit floating point representation to store the intermediate sample values and other data in memory during the decoding of MP3 bit streams. A floating point number representation offers a better trade-off between dynamic range and precision than a fixed point representation for a given word length. Using a floating point representation means that smaller memories can be used which leads to smaller chip area and lower power consumption without reducing sound quality. We have designed and implemented a DSP processor based on 16-bit floating point intermediate storage. The DSP processor is capable of decoding all MP3 bit streams at 20 MHz and this has been demonstrated on an FPGA prototype.

Published in:

Multimedia Signal Processing, 2004 IEEE 6th Workshop on

Date of Conference:

29 Sept.-1 Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.