By Topic

Conceptual design and dimensional synthesis for a 3-DOF module of the TriVariant-a novel 5-DOF reconfigurable hybrid robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Huang, T. ; Sch. of Mech. Eng., Tianjin Univ., China ; Li, M. ; Zhao, X.M. ; Mei, J.P.
more authors

This paper deals with the conceptual design and dimensional synthesis of a 3-DOF parallel mechanism module which forms the main body of a newly invented 5-DOF reconfigurable hybrid robot named "TriVariant." The TriVariant is a modified version of the Tricept robot, achieved by integrating one of the three active limbs into the passive limb. The idea leading to the innovation of the module is systematically addressed. Its kinematic performance is optimized by minimizing a global and comprehensive conditioning index subject to a set of appropriate mechanical constraints. It is concluded that the proposed hybrid system is more cost-effective and has a competitive kinematic performance in comparison with the well-known Tricept robot.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 3 )