By Topic

Kernel-based methods for hyperspectral image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Camps-Valls, G. ; GPDS. Dept., Enginyeria Electron.. Escola Tenica Superior d''Enginyeria. Univ. de Valencia, Burjassot, Spain ; Bruzzone, L.

This paper presents the framework of kernel-based methods in the context of hyperspectral image classification, illustrating from a general viewpoint the main characteristics of different kernel-based approaches and analyzing their properties in the hyperspectral domain. In particular, we assess performance of regularized radial basis function neural networks (Reg-RBFNN), standard support vector machines (SVMs), kernel Fisher discriminant (KFD) analysis, and regularized AdaBoost (Reg-AB). The novelty of this work consists in: 1) introducing Reg-RBFNN and Reg-AB for hyperspectral image classification; 2) comparing kernel-based methods by taking into account the peculiarities of hyperspectral images; and 3) clarifying their theoretical relationships. To these purposes, we focus on the accuracy of methods when working in noisy environments, high input dimension, and limited training sets. In addition, some other important issues are discussed, such as the sparsity of the solutions, the computational burden, and the capability of the methods to provide outputs that can be directly interpreted as probabilities.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 6 )