Cart (Loading....) | Create Account
Close category search window
 

A CMOS floating-gate matrix transform imager

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bandyopadhyay, A. ; Electr. & Comput. Eng. Dept., Georgia Inst. of Technol., Atlanta, GA, USA ; Hasler, P. ; Anderson, D.

A new transform imager technology and architecture is introduced in this paper. This approach allows for retina and higher-level bio-inspired computation in a programmable architecture that still possesses similar high-fill factor pixels of APS imagers. This imager is capable of programmable matrix operations on the image, where the image can be presented as either a full matrix or using block matrix operations. Each pixel is composed of a photodiode sensor element and a multiplier. The core imager performs computation at the pixel plane but still holds to a fill factor greater than 46 %. The resulting data-flow architecture directly allows computation of spatial transforms, motion computations, and stereo computations.

Published in:

Sensors Journal, IEEE  (Volume:5 ,  Issue: 3 )

Date of Publication:

June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.