Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

A kinetic study of analyte-receptor binding and dissociation for surface plasmon resonance biosensors applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramakrishnan, A. ; Composite Struct. & Nano Eng. Res. Group, Univ. of Mississippi, University, MS, USA ; Yongqiang Tan ; Sadana, A.

A fractal analysis, which takes into account the effect of surface heterogeneity brought about by ligand immobilization on the reaction kinetics in surface plasmon resonance (SPR) biosensors, is presented. The binding and dissociation of estrogen receptors (ERs), ERa and ERα and ERβ, in solution to different ligands immobilized on the SPR biosensor is analyzed within the fractal framework. The heterogeneity on the biosensor surface is made quantitative by using a single number, the fractal dimension Df. The analysis provides physical insights into the binding of these receptors to different ligands and compounds, particularly the endocrine disrupting compounds (EDCs). These EDCs have deleterious effects on humans and on wildlife. Single- and dual-fractal models were employed to fit the ER-binding data obtained from the literature. Values of the binding and dissociation rate coefficient and fractal dimensions were obtained from a regression analysis provided by Corel Quattro Pro, 8.0. Values for the affinity KD(=kd/ka) were also calculated. This provides us with some extra flexibility in designing biomolecular assays. The analysis should provide further information on the mode of action and interaction of EDCs with the ERs. This would help in the design of agents and modulators against these EDCs.

Published in:

Sensors Journal, IEEE  (Volume:5 ,  Issue: 3 )