By Topic

Continuous-time anti-windup generalized predictive control of uncertain processes with input constraints and time delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mingcong Deng ; Dept. of Syst. Eng., Okayama Univ., Japan ; A. Inoue ; K. Takeda ; Y. Hirashima

In this paper, a design problem of a continuous-time anti-windup generalized predictive control (CAGPC) system using coprime factorization approach for uncertain processes with input constraints and time delays is considered. The uncertainty of the process is considered as an uncertain time delay. To reduce the effect of the input constraint and uncertain delay, controller for strong stability of the closed-loop system is designed. As a practical appeal, the effectiveness of the proposed design scheme is confirmed by a simulated application to an industrial process with input constraint and uncertain time delay.

Published in:

Decision and Control, 2004. CDC. 43rd IEEE Conference on  (Volume:5 )

Date of Conference:

14-17 Dec. 2004