By Topic

Heuristic rule-based phase balancing of distribution systems by considering customer load patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chia-Hung Lin ; Dept. of Electr. Eng., Nat. Kaohsiung Univ. of Appl. Sci., Taiwan ; Chao-Shun Chen ; Hui-Jen Chuang ; Cheng-Yu Ho

In this paper, a heuristic backtracking search algorithm is proposed to adjust the phasing arrangement of primary feeders and laterals for phase balancing of distribution systems. The phase unbalance index of distribution feeders is calculated based on the phasing current magnitude of each line segment and branch, which has been solved by a three-phase load flow program. The database of an automated mapping/facility management (AM/FM) system is used to retrieve the component attributes, and the topology process is executed to determine the electrical network configuration and the customers served by each distribution transformer. By using the monthly energy consumption of customers in customer information system (CIS) and the typical daily load patterns of customer classes, the hourly loading profiles of distribution transformers and service zones can be derived to solve the individual phase loadings of each primary feeder and lateral. The phase balancing of distribution systems is enhanced by heuristic rule-based searching process to minimize the phase unbalance index. To demonstrate the effectiveness of proposed methodology, a practical distribution feeder with 2754 customers is selected for computer simulation to enhance three-phase balancing of distribution systems. It is concluded that three-phase balancing of distribution systems can be obtained by considering customer load characteristics.

Published in:

IEEE Transactions on Power Systems  (Volume:20 ,  Issue: 2 )