By Topic

Search biases in constrained evolutionary optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Runarsson, T.P. ; Sci. Inst., Univ. of Iceland, Reykjavik, Iceland ; Xin Yao

A common approach to constraint handling in evolutionary optimization is to apply a penalty function to bias the search toward a feasible solution. It has been proposed that the subjective setting of various penalty parameters can be avoided using a multiobjective formulation. This paper analyzes and explains in depth why and when the multiobjective approach to constraint handling is expected to work or fail. Furthermore, an improved evolutionary algorithm based on evolution strategies and differential variation is proposed. Extensive experimental studies have been carried out. Our results reveal that the unbiased multiobjective approach to constraint handling may not be as effective as one may have assumed.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:35 ,  Issue: 2 )