Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

The application of network objective functions for actively minimizing the impact of voltage harmonics in power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Grady, W.M. ; Texas Univ., Austin, TX, USA ; Samotyj, M.J. ; Noyola, A.H.

The impact of voltage harmonics on a power system can be minimized by using active filters to inject distortion-canceling currents. However, a network objective function must be specified before the optimum filter injection currents can be determined. The authors illustrate the application of a distortion-minimizing procedure with each of the following four network correction strategies, total harmonic voltage distortion, telephone influence factor, motor load-loss function, and single-bus sine wave correction. It is also pointed out that, as with any active device, care must be taken when sitting and controlling an APLC (active power line conditioner) to ensure maximum improvement in network distortion. If a network approach is not used, a poorly located APLC could have an overall negative impact

Published in:

Power Delivery, IEEE Transactions on  (Volume:7 ,  Issue: 3 )