By Topic

Robot steering with spectral image information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ackerman, C. ; Comput. Sci. Dept., Univ. of Southern California, Los Angeles, CA, USA ; Itti, L.

We introduce a method for rapidly classifying visual scenes globally along a small number of navigationally relevant dimensions: depth of scene, presence of obstacles, path versus nonpath, and orientation of path. We show that the algorithm reliably classifies scenes in terms of these high-level features, based on global or coarsely localized spectral analysis analogous to early-stage biological vision. We use this analysis to implement a real-time visual navigational system on a mobile robot, trained online by a human operator. We demonstrate successful training and subsequent autonomous path following for two different outdoor environments, a running track and a concrete trail. Our success with this technique suggests a general applicability to autonomous robot navigation in a variety of environments.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 2 )