By Topic

Biological applications of localised surface plasmonic phenomenae

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
D. A. Stuart ; Dept. of Chem., Northwestern Univ., Evanston, USA ; A. J. Haes ; C. R. Yonzon ; E. M. Hicks
more authors

Researchers and industrialists have taken advantage of the unusual optical, magnetic, electronic, catalytic, and mechanical properties of nanomaterials. Nanoparticles and nanoscale materials have proven to be useful for biological uses. Nanoscale materials hold a particular interest to those in the biological sciences because they are on the same size scale as biological macromolecules, proteins and nucleic acids. The interactions between biomolecules and nanomaterials have formed the basis for a number of applications including detection, biosensing, cellular and in situ hybridisation labelling, cell tagging and sorting, point-of-care diagnostics, kinetic and binding studies, imaging enhancers, and even as potential therapeutic agents. Noble metal nanoparticles are especially interesting because of their unusual optical properties which arise from their ability to support surface plasmons. In this review the authors focus on biological applications and technologies that utilise two types of related plasmonic phenomonae: localised surface plasmon resonance (LSPR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). The background necessary to understand the application of LSPR and SERS to biological problems is presented and illustrative examples of resonant Rayleigh scattering, refractive index sensing, and SERS-based detection and labelling are discussed.

Published in:

IEE Proceedings - Nanobiotechnology  (Volume:152 ,  Issue: 1 )