By Topic

Efficient shield insertion for inductive noise reduction in nanometer technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. A. Elgamel ; Center for Adv. Comput. Studies, Univ. of Louisiana, Lafayette, LA, USA ; A. Kumar ; M. A. Bayoumi

With high clock frequencies, faster transistor rise/fall time, wider wires, and the use of Cu material interconnects, interconnect inductive noise is becoming an important design metric in digital circuits. An efficient technique to reduce the inductive noise of on-chip interconnects is to insert shields among signal wires. An efficient solution for the min-area shield insertion problem to satisfy given explicit noise bounds in multiple coupled nets is provided. The proposed algorithm determines the locations and number of shields needed to satisfy certain noise constraints. Experimental results show that the proposed approach minimizes the number of shields required to satisfy the noise constraints and uses less runtime than the best alternative reported approach.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:13 ,  Issue: 3 )