Cart (Loading....) | Create Account
Close category search window
 

A method to take account of inhomogeneity in mechanical component reliability calculations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian-Ping Li ; Appl. Mech. Div., Univ. of Manchester Inst. of Sci. & Technol., UK ; Thompson, G.

This paper proposes a method by which material inhomogeneity may be taken into account in a reliability calculation. The method employs Monte-Carlo simulation; and introduces a material strength index, and a standard deviation of material strength to model the variation in the strength of a component throughout its volume. The method is compared to conventional load-strength interference theory. The results are identical for the case of homogeneous material, but reliability is shown to reduce for the same load as the component volume increases. The case of a tensile bar is used to explore the variation of reliability with component volume.

Published in:

Reliability, IEEE Transactions on  (Volume:54 ,  Issue: 1 )

Date of Publication:

March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.