Cart (Loading....) | Create Account
Close category search window
 

TetStreamer: compressed back-to-front transmission of Delaunay tetrahedra meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bischoff, U. ; Georgia Inst. of Technol., Atlanta, GA, USA ; Rossignac, Jarek

We use the abbreviations tet and tri for tetrahedron and triangle. TetStreamer encodes a Delaunay tet mesh in a back-to-front visibility order and streams it from a server to a client (volumetric visualizer). During decompression, the server performs the view-dependent back-to-front sorting of the tets by identifying and deactivating one free tet at a time. A tet is free when all its back faces are on the sheet. The sheet is a tri mesh separating active and inactive tets. It is initialized with the back-facing boundary of the mesh. It is compressed using EdgeBreaker and transmitted first. It is maintained by both the server and the client and advanced towards the viewer passing one free tet at a time. The client receives a compressed bit stream indicating where to attach free tets to the sheet. It renders each free tet and updates the sheet by either flipping a concave edge, removing a concave valence-3 vertex, or inserting a new vertex to split a tri. TetStreamer compresses the connectivity of the whole let mesh to an average of about 1.7 bits per tet. The footprint (in-core memory required by the client) needs only to hold the evolving sheet, which is a small fraction of the storage that would be required by the entire tet-mesh. Hence, TetStreamer permits us to receive, decompress, and visualize or process very large meshes on clients with a small in-core memory. Furthermore, it permits us to use volumetric visualization techniques, which require that the mesh be processed in view-dependent back-to-front order, at no extra memory, performance or transmission cost.

Published in:

Data Compression Conference, 2005. Proceedings. DCC 2005

Date of Conference:

29-31 March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.