Cart (Loading....) | Create Account
Close category search window
 

Asymptotic decorrelation of between-Scale Wavelet coefficients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Craigmile, P.F. ; Dept. of Stat., Ohio State Univ., Columbus, OH, USA ; Percival, D.B.

In recent years there has been much interest in the analysis of time series using a discrete wavelet transform (DWT) based upon a Daubechies wavelet filter. Part of this interest has been sparked by the fact that the DWT approximately decorrelates certain stochastic processes, including stationary fractionally differenced (FD) processes with long memory characteristics and certain nonstationary processes such as fractional Brownian motion. It is shown that, as the width of the wavelet filter used to form the DWT increases, the covariance between wavelet coefficients associated with different scales decreases to zero for a wide class of stochastic processes. These processes are Gaussian with a spectral density function (SDF) that is the product of the SDF for a (not necessarily stationary) FD process multiplied by any bounded function that can serve as an SDF on its own. We demonstrate that this asymptotic theory provides a reasonable approximation to the between-scale covariance properties of wavelet coefficients based upon filter widths in common use. Our main result is one important piece of an overall strategy for establishing asymptotic results for certain wavelet-based statistics.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 3 )

Date of Publication:

March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.