By Topic

Robustness of polarization-mode-dispersion compensation in the presence of polarization-dependent loss

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shieh, W. ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Australia ; Dods, S.D.

The robustness of polarization-mode dispersion (PMD) compensation utilizing radio-frequency feedback in the presence of polarization-dependent loss (PDL) is investigated using a closed-loop dynamic model. Simulations using mean PMD of 30% of the bit period show that mean PDL of up to 2 dB increases the Q-penalty after PMD compensation by less than 0.1 dB. We find that the compensator can become trapped in secondary optima at high PDL, incurring significant additional penalty.

Published in:

Photonics Technology Letters, IEEE  (Volume:17 ,  Issue: 3 )