By Topic

In search of "Forever," continued transistor scaling one new material at a time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Thompson, S.E. ; Coll. of Eng., Univ. of Florida, Gainesville, FL, USA ; Chau, R.S. ; Ghani, T. ; Mistry, K.
more authors

This work looks at past, present, and future material changes for the metal-oxide-semiconductor field-effect transistor (MOSFET). It is shown that conventional planar bulk MOSFET channel length scaling, which has driven the industry for the last 40 years, is slowing. To continue Moore's law, new materials and structures are required. The first major material change to extend Moore's law is the use of SiGe at the 90-nm technology generation to incorporate significant levels of strain into the Si channel for 20%-50% mobility enhancement. For the next several logic technologies, MOSFETs will improve though higher levels of uniaxial process stress. After that, new materials that address MOSFET poly-Si gate depletion, gate thickness scaling, and alternate device structures (FinFET, tri-gate, or carbon nanotube) are possible technology directions. Which of these options are implemented depends on the magnitude of the performance benefit versus manufacturing complexity and cost. Finally, for future material changes targeted toward enhanced transistor performance, there are three key points: 1) performance enhancement options need to be scalable to future technology nodes; 2) new transistor features or structures that are not additive with current enhancement concepts may not be viable; and 3) improving external resistance appears more important than new channel materials (like carbon nanotubes) since the ratio of external to channel resistance is approaching ∼1 in nanoscale planar MOSFETs.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:18 ,  Issue: 1 )