By Topic

Defect characterization and yield analysis of array-based nanoarchitecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shanrui Zhang ; Dept. of Electr. & Comput. Eng., Missouri Univ., Rolla, MO, USA ; Minsu Choi ; Park, N.

With molecular-scale materials and fabrication techniques recently developed, high-density computing systems in nanometer domain emerge. An array-based nanoarchitecture has been recently proposed based on nanowires such as carbon nanotubes (CNTs), silicon nanowires (SiNWs). High-density nanoarray-based systems consisting of nanometer-scale elements are likely to have many imperfections; thus, defect-tolerance is considered as one of the most significant challenges. In this paper, we propose a probabilistic yield model for the array-based nanoarchitecture. The proposed yield model can be used 1) to accurately estimate the raw and net array densities, and 2) to design and optimize more defect and fault-tolerant systems based on the array-based nanoarchitecture.

Published in:

Nanotechnology, 2004. 4th IEEE Conference on

Date of Conference:

16-19 Aug. 2004