By Topic

A hybrid strategy to solve the forward kinematics problem in parallel manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parikh, P.J. ; Ind. & Syst. Eng. Dept., State Univ., Blacksburg, VA, USA ; Lam, S.S.Y.

A parallel manipulator is a closed kinematic structure with the necessary rigidity to provide a high payload to self-weight ratio suitable for many applications in manufacturing, flight simulation systems, and medical robotics. Because of its closed structure, the kinematic control of such a mechanism is difficult. The inverse kinematics problem for such manipulators has a mathematical solution; however, the forward kinematics problem (FKP) is mathematically intractable. This work addresses the FKP and proposes a neural-network-based hybrid strategy that solves the problem to a desired level of accuracy, and can achieve the solution in real time. Two neural-network (NN) concepts using a modified form of multilayered perceptrons with backpropagation learning were implemented. The better performing concept was then combined with a standard Newton-Raphson numerical technique to yield a hybrid solution strategy. Simulation studies were carried out on a flight simulation syystem to check the validity o the approach. Accuracy of close to 0.01 mm and 0.01° in the position and orientation parameters was achieved in less than two iterations and 0.02 s of execution time for the proposed strategy.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 1 )