Cart (Loading....) | Create Account
Close category search window

A differential viscosity detector for use in miniaturized chemical separation systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Blom, M.T. ; MESA Res. Inst., Univ. of Twente, Enschede, Netherlands ; Chmela, E. ; van der Heyden, F.H.J. ; Oosterbroek, R.E.
more authors

We present a micromachined differential viscosity detector suitable for integration into an on-chip hydrodynamic chromatography system. The general design, however, is applicable to any liquid chromatography system that is used for separation of polymers. The micromachined part of the detector consists of a fluidic Wheatstone bridge and a low hydraulic capacitance pressure sensor of which the pressure sensing is based on optical detection of a membrane deflection. The stand-alone sensor shows a resolution in specific viscosity of 3×10-3, in which specific viscosity is defined as the increase in viscosity by a sample, relative to the baseline viscosity of a solvent.

Published in:

Microelectromechanical Systems, Journal of  (Volume:14 ,  Issue: 1 )

Date of Publication:

Feb. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.