By Topic

Absolute componentwise stability of interval hopfield neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pastravanu, O. ; Dept. of Autom. Control & Ind. Informatics, Tech. Univ. "Gh. Asachi" of Iasi, Romania ; Matcovschi, M.

The componentwise stability is a special type of asymptotic stability which ensures the individual monitoring of each state-space variable of a dynamical system. For an interval Hopfield neural network (IHNN), sufficient conditions are provided to analyze the absolute componentwise stability with respect to a class of activation functions (CAF). Both continuous- and discrete-time dynamics are considered. The conditions are formulated in terms of Hurwitz/Schur stability of a test matrix built from the information about the CAF and the interval matrices defining the IHNN. Some interesting results are derived as particular cases, which allow comparisons with several other works.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 1 )