By Topic

A novel neural approximate inverse control for unknown nonlinear discrete dynamical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hua Deng ; Dept. of Manuf. Eng. & Eng. Manage., City Univ. of Hong Kong, China ; Han-Xiong Li

A novel neural approximate inverse control is proposed for general unknown single-input-single-output (SISO) and multi-input-multi-output (MIMO) nonlinear discrete dynamical systems. Based on an innovative input/output (I/O) approximation of neural network nonlinear models, the neural inverse control law can be derived directly and its implementation for an unknown process is straightforward. Only a general identification technique is involved in both model development and control design without extra training (online or offline) for the neural nonlinear inverse controller. With less approximation made on controller development, the control will be more robust to large variations in the operating region. The robustness of the stability and the performance of a closed-loop system can be rigorously established even if the nonlinear plant is of not well defined relative degree. Extensive simulations demonstrate the performance of the proposed neural inverse control.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:35 ,  Issue: 1 )