By Topic

A soft error rate analysis (SERA) methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming Zhang ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Shanbhag, N.R.

We present a soft error rate analysis (SERA) methodology for combinational and memory circuits. SERA is based on a modeling and analysis-based approach that employs a judicious mix of probability theory, circuit simulation, graph theory and fault simulation. SERA achieves five orders of magnitude speed-up over Monte Carlo based simulation approaches with less than 5% error. Dependence of soft error rate (SER) of combinational circuits on supply voltage, clock period, latching window, circuit topology, and input vector values are explicitly captured and studied for a typical 0.18 μm CMOS process. Results show that the SER of logic is a much stronger function of timing parameters than the supply voltage. Also, an "SER peaking" phenomenon in multipliers is observed where the center bits have an SER that is in order of magnitude greater than that of LSBs and MSBs.

Published in:

Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference on

Date of Conference:

7-11 Nov. 2004