By Topic

Fuzzy rules from ant-inspired computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Galea ; Sch. of Informatics, Edinburgh Univ., UK ; Qiang Shen

A new approach to fuzzy rule induction from historical data is presented. The implemented system - FRANTIC - is a tested on a simple classification problem against a fuzzy tree induction algorithm, a genetic algorithm, and a numerical method for inducing fuzzy rules based on fuzzy subsethood values. The results obtained by FRANTIC indicate comparable or better classification accuracy, superior comprehensibility, and potentially more flexibility when applied to larger data sets. The impact of the knowledge representation used when generating fuzzy rules is also highlighted.

Published in:

Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on  (Volume:3 )

Date of Conference:

25-29 July 2004