By Topic

Identification of the defective equipments in GIS using the self organizing map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Lin ; Dept. of Electron. & Electr. Eng., Univ. of Bath, UK ; R. K. Aggarwal ; C. H. Kim

Condition monitoring for gas insulated switchgear (GIS) requires an accurate and reliable identification of the defective equipment in it for maintenance purposes. In this paper, a feature extraction procedure is explored, which is based on the power spectral density (PSD) of the denoised partial discharges (PDs) emanating from the defective equipment in the GIS. Furthermore, artificial intelligence techniques, in particular, the self organising map (SOM), are investigated for their roles as classifiers to precisely identify this defective equipment, based on the PSD feature patterns. The performance of the SOM-based classifier is ascertained by using the PDs acquired from GIS in the Korean 154-kV EHV transmission networks.

Published in:

IEE Proceedings - Generation, Transmission and Distribution  (Volume:151 ,  Issue: 5 )