By Topic

An efficient message-passing schedule for LDPC decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
E. Sharon ; Tel Aviv Univ., Israel ; S. Litsyn ; J. Goldberger

An efficient decoding schedule for low-density parity-check (LDPC) codes that outperforms the conventional approach, in terms of both complexity and performance, is presented. Conventionally, in each iteration, all symbol nodes and, subsequently, all the check nodes, send messages to their neighbors ("flooding schedule"). In contrast, in the proposed method, the updating of nodes is performed according to a serial schedule which propagates the information twice as fast. A density evolution (DE) algorithm for asymptotic analysis of the new schedule is derived, showing that, when working near the code's capacity, the decoder converges in approximately half the number of iterations. In addition, a concentration theorem is proved, showing that, for a randomly chosen serial schedule, code graph, and decoder input, the decoder's performance approaches its expected one as predicted by the DE algorithm, when the code length increases.

Published in:

Electrical and Electronics Engineers in Israel, 2004. Proceedings. 2004 23rd IEEE Convention of

Date of Conference:

6-7 Sept. 2004