By Topic

Fault-tolerant vibration control in a networked and embedded rocket fairing system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lingfeng Wang ; Dept. of Electr. & Comput. Eng., Univ. of Virginia, Charlottesville, VA, USA ; Bin Huang ; Kay Chen Tan

Active vibration control using piezoelectric actuators in a networked and embedded environment has been widely applied to solve the rocket fairing vibration problem. However, actuator failures may lead to performance deterioration or system dysfunction. To guarantee the desired system performance, the remaining actuators should be able to coordinate with each other to compensate for the damaging effects caused by the failed actuator in a timely manner. Further, in the networked control environment, timing issues such as sampling jitter and network-induced delay should be considered in the controller design. In this study, a timing compensation approach is implemented in an adaptive actuator failure compensation controller to maintain the fairing system performance by also considering the detrimental effects from real-time constraints. In addition, time-delay compensation in the networked control system is discussed, which is able to reduce damaging effects of network-induced delays.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:51 ,  Issue: 6 )