By Topic

Highly available and heterogeneous continuous media storage systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zimmermann, R. ; Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA ; Ghandeharizadeh, S.

A number of recent technological trends have made data intensive applications such as continuous media (audio and video) servers a reality. These servers store and retrieve large volumes of data using magnetic disks. Servers consisting of multiple nodes and large arrays of heterogeneous disk drives have become a fact of life for several reasons. First, magnetic disks might fail. Failed disks are almost always replaced with newer disk models because the current technological trend for these devices is one of annual increase in both performance and storage capacity. Second, storage requirements are ever increasing, forcing servers to be scaled up progressively. In this study, we present a framework to enable parity-based data protection for heterogeneous storage systems and to compute their mean lifetime. We describe the tradeoffs associated with three alternative techniques: independent subservers, dependent subservers, and disk merging. The disk merging approach provides a solution for systems that require highly available secondary storage in environments that also necessitate maximum flexibility.

Published in:

Multimedia, IEEE Transactions on  (Volume:6 ,  Issue: 6 )