By Topic

Design of compact stacked-patch antennas in LTCC multilayer packaging modules for wireless applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
RongLin Li ; Georgia Electron. Design Center, Georgia Inst. of Technol., USA ; Dejean, G. ; Moonkyun Maeng ; Kyutae Lim
more authors

A simple procedure for the design of compact stacked-patch antennas is presented based on LTCC multilayer packaging technology. The advantage of this topology is that only one parameter, i.e., the substrate thickness (or equivalently the number of LTCC layers), needs to be adjusted in order to achieve an optimized bandwidth performance. The validity of the new design strategy is verified through applying it to practical compact antenna design for several wireless communication bands, including ISM 2.4-GHz band, IEEE 802.11a 5.8-GHz, and LMDS 28-GHz band. It is shown that a 10-dB return-loss bandwidth of 7% can be achieved for the LTCC (εr=5.6) multilayer structure with a thickness of less than 0.03 wavelengths, which can be realized using a different number of laminated layers for different frequencies (e.g., three layers for the 28-GHz band).

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:27 ,  Issue: 4 )