Cart (Loading....) | Create Account
Close category search window
 

From micro to nano: properties and potential applications of micro- and nano-filled polymer ceramic composites in microsystem technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hanemann, T. ; Forschungszentrum Karlsruhe, Germany ; Boehm, J. ; Henzi, P. ; Honnef, K.
more authors

In microsystem technology, four important material classes are established either for the generation or the replication of microstructured surfaces: silicon, polymers, metals and ceramics. Composite materials consisting of a polymer matrix and ceramic fillers show improved thermomechanical properties in comparison to polymers and can be introduced as a new additional material class. The substitution of micro-sized ceramic fillers by nano-sized ceramics in composites has a strong influence on the composite's physical properties: the reduction of ceramic particle size down to the nanometre scale results in an improved sinter activity owing to the large surface area. The fabrication of dense ceramics is simplified and can be used for a rapid prototyping of microstructured ceramic parts. The addition of nano-sized ceramics with particle sizes of <40 nm to polymers allows the manufacturing of transparent polymer based composites with modified refractive indices for use in polymer waveguides. The influence of the ceramic particle size, the ceramic content and different dispersion methods on the composite's physical properties are discussed.

Published in:

Nanobiotechnology, IEE Proceedings -  (Volume:151 ,  Issue: 4 )

Date of Publication:

2 Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.