Cart (Loading....) | Create Account
Close category search window
 

A new recursive algorithm for computing generating functions in closed multi-class queueing networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harrison, P.G. ; Dept. of Comput., Imperial Coll., London, UK ; Ting Ting Lee

We obtain an algorithm that implements a recursive generating function (RGF) for computing the normalising constant in closed, multi-class, product-form queueing networks with multiple, load-independent servers of the same load. It expresses the generating function of a q-class network in terms of the generating functions of a set of (q-1)-class networks. The result for a multi-class network can therefore be deduced hierarchically by finding the normalising constants of a collection of single class networks. A storage management scheme is devised, based on a depth-first recursion tree traversal, to optimise both time and storage requirements and the numerical precision of the resulting RGF algorithm is investigated. In two-class networks, the space and time requirements of RGF are shown to be smaller than for the convolution and RECAL algorithms when the networks contain a moderate to large number of customers. With more classes, RGF gives better performance than the other two methods in many-node networks that are organised in a few groups of several identical nodes.

Published in:

Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings. The IEEE Computer Society's 12th Annual International Symposium on

Date of Conference:

4-8 Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.