By Topic

Saturation for a general class of models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Miner, A.S. ; Dept. of Comput. Sci., Iowa State Univ., Ames, IA, USA

Implicit techniques for construction and representation of the reachability set of a high-level model have become quite efficient for certain types of models. In particular, previous work developed a "saturation" algorithm that exploits asynchronous behavior to efficiently construct the reachability set using multiway decision diagrams, but requires each model event to be expressible as a Kronecker product. In this paper, we develop a new version of the saturation algorithm that works for a general class of models: models whose events are not necessarily expressible as Kronecker products, models containing events with complex priority structures, and models whose state variables have unknown bounds. We apply our algorithm to several examples and give detailed experimental results.

Published in:

Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. First International Conference on the

Date of Conference:

27-30 Sept. 2004