By Topic

Approximate computation of transient results for large Markov chains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Buchholz ; Informatik IV, Dortmund Univ., Germany ; W. H. Sanders

This paper presents a new approach for the computation of transient measures in large continuous time Markov chains (CTMCs). The approach combines the randomization approach for transient analysis of CTMCs with a new representation of probability vectors as Kronecker products of small component vectors. This representation is an approximation that allows an extremely space- and time-efficient computation of transient vectors. Usually, the resulting approximation is very good and introduces errors that are comparable to those found with existing approximation techniques for stationary analysis. By increasing the space and time requirements of the approach, we can represent parts of the solution vector in detail and reduce the approximation error, yielding exact solutions in the limiting case.

Published in:

Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. First International Conference on the

Date of Conference:

27-30 Sept. 2004