By Topic

On the use of conformal grids for propagation and scattering problems in finite-difference time-domain computations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joseph, J. ; Electromagn. Commun. Lab., Illinois Univ., Urbana, IL, USA ; Mittra, R.

The authors examine the use of grids that are conformal with the geometry of the material boundaries and, consequently, reduce the discretization errors introduced by the stair-stepped approximation. However, it is found that the introduction of the nonuniformity in the grid gives rise to at least two difficulties in the implementation of the finite-difference time-domain algorithm. The first is the loss of accuracy in the computation of finite-difference derivatives when the field points are distributed nonuniformly. The second is implementation of the appropriate boundary conditions at the material interfaces. The authors address these problems and suggest some means for eradicating them. A scheme is presented that has the attractive feature that it reduces to the conventional finite-difference time-domain method if a uniform grid is used. To illustrate the proposed algorithm the authors consider a parallel plate waveguide which supports a single propagating mode.<>

Published in:

Antennas and Propagation Society International Symposium, 1989. AP-S. Digest

Date of Conference:

26-30 June 1989