Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Segmentation of textured polarimetric SAR scenes by likelihood approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Beaulieu, J.-M. ; Comput. Sci. & Software Eng. Dept., Laval Univ., Quebec City, Que., Canada ; Touzi, R.

A hierarchical stepwise optimization process is developed for polarimetric synthetic aperture radar image segmentation. We show that image segmentation can be viewed as a likelihood approximation problem. The likelihood segment merging criteria are derived using the multivariate complex Gaussian, the Wishart distribution, and the K-distribution. In the presence of spatial texture, the Gaussian-Wishart segmentation is not appropriate. The K-distribution segmentation is more effective in textured forested areas. The validity of the product model is also assessed, and a field-adaptable segmentation strategy combining different criteria is examined.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 10 )