Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Optimal call admission control on a single link with a GPS scheduler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Panagakis, A. ; Dept. of Informatics, Univ. of Athens, Greece ; Dukkipati, N. ; Stavrakakis, I. ; Kuri, J.

The problem of call admission control (CAC) is considered for leaky bucket constrained sessions with deterministic service guarantees (zero loss and finite delay bound) served by a generalized processor sharing scheduler at a single node in the presence of best effort traffic. Based on an optimization process, a CAC algorithm capable of determining the (unique) optimal solution is derived. The derived algorithm is also applicable, under a slight modification, in a system where the best effort traffic is absent and is capable of guaranteeing that if it does not find a solution to the CAC problem, then a solution does not exist. The numerical results indicate that the CAC algorithm can achieve a significant improvement on bandwidth utilization as compared to a (deterministic) effective bandwidth-based CAC scheme.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:12 ,  Issue: 5 )