By Topic

Algebraic description of curve structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Nishida ; Ricoh Res. & Dev. Center, Yokohama, Japan ; S. Mori

The authors propose a compact and concise method of describing curves in terms of the quasi-topological features and the structure of each singular point. The quasi-topological features are the convexity, loop, and connectivity. The quasi-topological structure is analyzed in a hierarchical way, and algebraic structure is presented explicitly for each representation level. The lower-level representations are integrated into the higher-level one in a systematic way. When a curve has singular points (branch points), the curve is decomposed into components, where each is a simple arc or a simple closed curve, by decomposing each singular point. The description scheme is applied to character recognition

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:14 ,  Issue: 5 )