By Topic

A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part II: performance evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying-Hong Lin ; Dept. of Eng. & Manage. of Adv. Technol., Chang Jung Christian Univ., Taiwan, Taiwan ; Chih-Wen Liu ; Ching-Shan Chen

The theory and algorithms of the proposed technique have been presented in Part I of this two-paper set. In Part II of this two-paper set, the proposed technique is evaluated by considerable simulation cases simulated by the Matlab/Power system Blockset simulator. For the proposed fault detector, the trip time achieved can be up to 3.25 ms and the average value of trip times is about 8 ms for both permanent and arcing faults on transmission lines. For the proposed fault locator, the accuracy can be up to 99.99% and the error does not exceed 0.45%. Moreover, the proposed arcing fault discriminator can discriminate between arcing and permanent faults within four cycles after fault inception. It has proven to be an effective tool to block reclosing on the permanent faults in the computer simulations. The simulation results also demonstrate that the presented extended discrete Fourier transform algorithm eliminates effectively the error caused by exponentially decaying dc offset on fundamental and harmonic phasor computations. Finally, a test case using the real-life measured data proves the feasibility of the proposed technique.

Published in:

Power Delivery, IEEE Transactions on  (Volume:19 ,  Issue: 4 )