Cart (Loading....) | Create Account
Close category search window
 

Boundary-constrained agglomerative segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hermes, L. ; Eur. Patent Office, The Hague, Netherlands ; Buhmann, J.M.

Automated interpretation of remotely sensed data poses certain demands to image segmentation algorithms, regarding speed, memory requirements, segmentation quality, noise robustness, complexity, and reproducibility. This paper addresses these issues by formulating image segmentation as source channel coding with side information. A cost function is developed that approximates the expected code length for a hypothetical two-part coding scheme. The cost function combines region-based and edge-based considerations, and it supports the utilization of reference data to enhance segmentation results. Optimization is implemented by an agglomerative segmentation algorithm that iteratively creates a tree-like description of the image. Given a fixed tree level and the output of the edge detector, the cost function is parameter-free, so that no exhaustive parameter-tuning is necessary. Additionally, a criterion is presented to reliably select an adequate tree level with high descriptive quality. It is shown by statistical analysis that the cost function is appropriate for both multispectral and synthetic aperture radar data. Experimental results confirm the high quality of the resulting segmentations.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 9 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.