By Topic

Application of the stochastic mixing model to hyperspectral resolution enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eismann, M.T. ; Air Force Res. Lab., Wright-Patterson, OH, USA ; Hardie, R.C.

A maximum a posteriori (MAP) estimation method is described for enhancing the spatial resolution of a hyperspectral image using a higher resolution coincident panchromatic image. The approach makes use of a stochastic mixing model (SMM) of the underlying spectral scene content to develop a cost function that simultaneously optimizes the estimated hyperspectral scene relative to the observed hyperspectral and panchromatic imagery, as well as the local statistics of the spectral mixing model. The incorporation of the stochastic mixing model is found to be the key ingredient for reconstructing subpixel spectral information in that it provides the necessary constraints that lead to a well-conditioned linear system of equations for the high-resolution hyperspectral image estimate. Here, the mathematical formulation of the proposed MAP method is described. Also, enhancement results using various hyperspectral image datasets are provided. In general, it is found that the MAP/SMM method is able to reconstruct subpixel information in several principal components of the high-resolution hyperspectral image estimate, while the enhancement for conventional methods, like those based on least squares estimation, is limited primarily to the first principal component (i.e., the intensity component).

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 9 )