Cart (Loading....) | Create Account
Close category search window
 

Parasitic ringing and design issues of digitally controlled high power interleaved boost converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xudong Huang ; Bradley Dept. of Electr. & Comput. Eng., State Univ., Blacksburg, VA, USA ; Xiaoyan Wang ; Nergaard, T. ; Jih-Sheng Lai
more authors

High power boost converter has become the essential part of the distributed power system that enables energy to be fully utilized in fuel cell powered electric vehicles and stationary power systems. This paper presents analysis and design of a high-power multileg interleaved boost converter with a digital signal processor (DSP) based controller. A 20-kW converter was designed with coupled inductors to allow core-loss reduction and designed with high frequency switching to minimize the component size and eliminate the switching losses under discontinuous conducting mode operation. A dual-loop average current mode current control method implemented in DSP is employed to achieve the fast transient response. It was found through circuit analysis, simulation and experiment that the boost inductor interacted with the device parasitic capacitor and created unnecessary oscillating current whenever it reached zero current. Two high-power devices were used in both simulation and experiment to verify the analysis and design for a wide load range. Simulation and experiment results of the 20-kW boost converter under startup condition and load transient condition are also presented. Different anti-windup schemes for a typical PI-controller are evaluated. The results show that this typical controller with proper anti-windup scheme achieves better transient performance than without anti-windup scheme.

Published in:

Power Electronics, IEEE Transactions on  (Volume:19 ,  Issue: 5 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.