By Topic

An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Quincy Wang ; Elliott Energy Syst. Inc., Stuart, FL, USA ; Liuchen Chang

This paper focuses on the development of maximum wind power extraction algorithms for inverter-based variable speed wind power generation systems. A review of existing maximum wind power extraction algorithms is presented in this paper, based on which an intelligent maximum power extraction algorithm is developed by the authors to improve the system performance and to facilitate the control implementation. As an integral part of the max-power extraction algorithm, advanced hill-climb searching method has been developed to take into account the wind turbine inertia. The intelligent memory method with an on-line training process is described in this paper. The developed maximum wind power extraction algorithm has the capability of providing initial power demand based on error driven control, searching for the maximum wind turbine power at variable wind speeds, constructing an intelligent memory, and applying the intelligent memory data to control the inverter for maximum wind power extraction, without the need for either knowledge of wind turbine characteristics or the measurements of mechanical quantities such as wind speed and turbine rotor speed. System simulation results and test results have confirmed the functionality and performance of this method.

Published in:

Power Electronics, IEEE Transactions on  (Volume:19 ,  Issue: 5 )