By Topic

Target-cluster fusion approach for classifying high resolution IKONOS imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Y. Su ; Dept. of Comput. Sci. & Eng., Yuan Ze Univ., Taoyuan Taiwan, Taiwan ; P. S. Huang ; C. -F. Lin ; T. -M. Tu

To extract GIS features from high spatial resolution imagery is an important task in remote sensing applications. However, traditional pixel-based classification methods, which were developed in the era of 10-100 m ground pixel size imagery, cannot exploit the advantages of new images provided by IKONOS and QuickBird. This is due to the increase of the within-class variability inherent from more detailed and higher spatial resolution data. To successfully extract various land covers from high resolution imagery, a target-clustering fusion (TCF) system is presented in the paper. Compared to the conventional classification methods that typically produce more salt-and-pepper-like results, the proposed TCF system can preserve detailed spatial information on each classified target related to its neighbours. To evaluate the efficacy of TCF, experiments are conducted using real IKONOS images.

Published in:

IEE Proceedings - Vision, Image and Signal Processing  (Volume:151 ,  Issue: 4 )